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Abstract

The author presents a review of Discrete Population Models for Single Species.
He describes their relevance and applications, gives a graphical approach to
solving non-linear models, presents some of the details around Equilibrium, Sta-
bility, and Chaos, looks rigorously at the technique of Linearisation around

equilibrium points, and then reviews Discrete Models with Delay.



Chapter 1

Discrete Models

1.1 Introduction

Discrete models, as opposed to continuous models, use difference equations
(rather than differential equations) to model biological phenomena, such as pop-
ulations, when it makes sense to measure the interval of time between events as
discrete or fixed. It also makes sense where successive measurements occur at
fixed time intervals - such as census data. We are interested in models of the

form:

Tiy1 = f(x1)

Where f is a linear or non-linear function of x;. The sequence {zg,x1, 2, ... }

is called the orbit.

As an example, consider a population that changes over time through births
and deaths only. Let us denote the population at time ¢ to be x;, and the
population at time ¢ + 1 to be x441. With a birth rate r, and a death rate rg4,

we can describe the rate of change of the population as follows:



Ti4+1 — Tt = TpTt — TdT¢
= (ro —ra)z
Tip1 = g+ (re —Ta)Ty
= (14ry,—rg)z

= TI

where r = 1+ ry, — rq. From here it is easy to show that:

Ty =TT
= r(rai_2)
= r’z_y
= r¥(re,_s)

= T T¢—3

= T"Xo

and for this simple model it is clear to see that when |r| < 1 then the population
decays to zero, and if |r| > 1 then the population grows without bound. If [r| =1
then the population exhibits no growth or decay at all, remaining constant at

it’s initial value.

1.2 Applications

Some examples where discrete models may be used are:



o plant population (annual reproduction)
o insect population (where there is no overlap in generations)

o cell population (within a culture)

1.3 Solutions

Solving a linear discrete model - coming up with a formula that expresses the
n-th iterate of our model in terms of the parameters of the model - is easy,
and allows us to make long-term predictions about the behaviour of our model.
In the non-linear case it is not possible to do this, and hence difficult to make

predictions about the long-term model behaviour, population dynamics, etc.
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Figure 1.1: Cobweb plot of z;y1 = xr(1 — 2y)



One technique for helping us to understand non-linear discrete models is cobweb-
bing, which is a graphical method for finding equilibrium points. The technique

is as follows:

e construct a set of axes with z; along the horizontal and x;;; along the

vertical
o draw the curve of the function z; 11 = f(x¢)
o draw the line 441 = x4

e draw a line vertically up from (z(,0) on the horizontal till it meets the

curve of the function
e this point is (zg, 1)
e draw a line horizontally from (zo,z1) till it meets the line x;11 = x¢
« call this point (x1,z1)
o with this point we repeat the above process until we either converge to an

equilibrium point or diverge

Equilibrium points are located where the curve and the line intersect - usually

denoted x*.



Chapter 2

Discrete Logistic Growth

2.1 Basics

Consider the Logistic growth model:

where r is the growth rate, and K is the carrying capacity. We can turn this

into a discrete model as follows:

N,
Nt+1 *Nt = T’Nt (1 };)

N,
Nep1i = Ne+rNy (1 - t)



by making a transformation we have:

TNt

xiy1 = f(zy) =0’ (1 —2¢) where ' =1+7r and z4= A+ 0K

2.2 Equilibrium

we now investigate the equilibrium states of this model, with 0 < r < 4 for

simplicity:

= 2'r(l—a%)
r(l—z") = 1
1
l—a* = -
r
N r—1
€T =
T

so we have two equilibrium points - * = 0 and z* = (r — 1)/r with r > 1
(as we are not interested in negative populations). In order to understand the

behaviour of the equilibrium points we need to look at the first derivative of

f(@):

f@) = ar(l-a)
F@) = r(l-20)



2.3  Stability

Examining both these equilibrium points with |f’(x)| < 1 denoting stability,

and |f'(z)| > 1 denoting instability:

Fo) = v

(
f,<rr1> o,

so z* = 0 is stable for r < 1, and unstable for » > 1, and z* = (r — 1)/r is

stable for 1 < r < 3, and does not exist for 0 < r < 1:

0<r<1 1<r<3
=0 stable unstable
g =11 does not exist stable

Table 2.1: Stability of discrete logistic growth model

2.4 Chaos

r = 1 and r = 3 are known as bifurcation points and represent parameter
values where our model’s behaviour changes. In order to understand the model’s

behaviour for r > 3 first we observe the following;:



T = flw)
= f(flzim1) = FPaion)
P (f(@e—2)) = fP(ze-2)

ft+1 (-rO)

and in particular, looking at the second order difference equation:

Tipve = [P(xe)
= f(f(z1))
= flz)r(l = f(z¢))
= (1 —a)(1 — 2r(1 — 24))

setting 440 = x; = z* we find:

= x*r2(1 - x*)(l _ x*r(l _ x*))
1 = 21—z —2"r(1 —z%))
L= PUatr e (@) =+ @) ()
1 = 72— g%3 4 (x*)2r3 - (x*)2r3 . (x*)?,rg
0 = 1-r+a"r® (@)% +atr? = (@) + (27)r

after some manipulation this reduces to:
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Figure 2.1: Bifurcations

(re* — (r+1)(r* (@) —r(r+ Dz* +(r+1)) =0

here ra* — (r+1) = 0 gives us one of our original equilibrium points, so instead

we look at:

r2(z*)? —r(r+D)a* +(r+1)=0

this quadratic will give us two real roots if the discriminant is positive:



r2(r+1)?—4r2(r+1) > 0
rP42r+1—4r—4 > 0
P —2r—=3 > 0

(r+1)(r—3) > 0

as we have restricted ourselves to r > 0, we have r > 3, and our solutions are:

I G VESV/ G [t
2r

so the next solution is said to have period 2 as there are two possible values. This
process continues for increasing r. So p-periodic solutions become 2p-periodic

solutions, and so on.

If an odd periodic solution (p > 3) exists for some value of r, say r., then there
is said to be aperiodic or chaotic solutions for r > r.. Chaotic solutions are

solutions that oscillate in random, or unpredictable, ways.

2.5 Analysis

We now investigate the stability of our Logistic growth model analytically

through linearisation about an equilibrium point:

Ty = 3" + uy, lug| < 1

substituting this into our function we get:

10



Tt uprr = f(@* +uy)

Taylor expanding around the equilibrium point we get:

T Fupr = f(@7) Fuf (@) + O(u7),  ul <1

as z* is an equilibrium point, f(2*) = z*, and discarding higher powers of u,

we get:

uf (z*)

= )\’U/t

Ut41

— t+1
= A ug

where A = f/(z*). From this we can draw conclusions about the stability of the

equilibrium point. It is clear that:

t—oc0

A >1 = lim u; = %00
t—o0

and hence:

*

[f'(z*) <1 = z* isstable

/()] >1 = 2" is unstable

11



Chapter 3

Discrete Models with Delay

3.1 Introduction

So far we have assumed that all members of the population at time ¢ contribute
to the population at time ¢ + 1, but this is not always the case. For example,
depending upon the interval of time, some members of a population may not
have yet reached sexual maturity, and hence cannot contribute to the popula-
tion. As a consequence it makes sense in some cases to introduce a delay term

to the model.

Tt41 = f(mt?xtf‘l')
3.2 Analysis
We switch now to a different model - Ricker’s model:

Tip1 = zrexp(r(l —zy))

12



with 7 > 0 - which has equilibrium points z* = 0 and z* = 1. We make a slight

change to this model by introducing a delay term:

Zpr1 = xrexp(r(l — x¢—1))

again, with 7 > 0. Now we linearise around z* = 1:

xtzl—l-ut, |ut|<<]-

substituting into our equation above we get:

e = (4w esp(r(d— (0 +u )

= (1 +u)exp(—rus_1)

Q

(1 4+ u)(1 —rug—q)
= 1 —rupq +us — rugui—q

Uty1 = Ut — TU—1

the above using the fact that exp(x) ~ 1 + z for small z.

3.3 Solutions

We have reduced our model to a second order difference equation:

Ut41 — Ut +rug—1 = 0

13



with characteristic equation:

22 —z24r=0

with solutions:

1 1

s = GLEVI=A]  0<r<g
1 1

o = 5{111‘\/47“—1] F<r<1

for the case of 0 < 1 < i we have:

t t
uy = Cyz] + Cazg

and because 0 < 215 < 1:

lim U = 0

t—o00

and hence:

lim z; =1
t—o00

therefore x* = 1 is stable for 0 < r < i. For the case of i < r < 1 we have:

14



|21,2| = \ﬁ
6 = tan~'(V4r —1)

B
Il

which leads to:

Uy = CZt + 6?5

= A€ (pet)! + ] e (pe !

i(0t+) —i(0t+)
e +e
= 2]4]p’ ( >

2

= 2|A|p'cos(0t + )

which is stable as r < 1. If we take r. = 1, then at r. we have:

0. = tan *(Vdr.—1)
tan~'(v/3)

wl

from which we get:

up = 2|A| cos(gt +7)

15



and hence:

and for » > r. we have p > 1 which gives us:

lim u; = +00
t—o0

and hence:

lim z; = o0
t—o0

16



Chapter 4

Solutions to problems

4.1 1z, = Px, + ax, 4

This is a linear system. The solution is as follows:

Tp+1 == ﬂxn +oary,—1
Tp4+1 — ﬁxn — OTp—1 = 0
with characteristic equation:
N—BA—a=0

and solutions:

3 B++/P?+4da
12=———(F——

17



our general solution is of the form:

Ty = 01)\? + CQ)\;L

which gives us for n =0 and n = 1:

X0 C1+ Oy

X1 = Cl)\l + CQ)\Q

taking x; we get:

B+ VB o f-\/F+4a
X1 Cl 9 +CQ 9
VB2 +4
g(C’l + CQ) + 8 9 a(cl - 02)
VB +4
= g;vng#(leCg)

2z, — Pxo
CL—Cy =
1 2 7 1 da
Ci+Cy = xo

solving for C7 and Cy we get:

o - xo(\/B? + da — ) + 21

24/6% +4a

02 _ 1’0(\/[32+4Oé+ﬂ)72$1

24/62 + 4«

18



so our general solution is:

T (xo(\/,6’2+4a—ﬁ)+2x1> <ﬁ+\/ﬁ2—|—4a>n

24/62 + 4« 2

+<$0(\/ﬁ2 + 4o+ B3) 2:cl> (ﬂ \/ﬂ2+4a>n

2y/6% + 4o 2

4.2 1z, = xn/l—i—:rn

This is a non-linear system.

T
€T =
n+1 1 + T,
finding the equilibrium points:
x*
¥ =
14 x*

¥ = 0

now we look at the stability:

19



f@) =
, B 1
fi(z) = m
fo =1

therefore, strictly speaking, we cannot say that * = 0 is either stable or unsta-
ble. Looking at the system graphically (Figure 4.1) starting in the neighbour-
hood of 1 and cobwebbing, we see that the system tends towards 0 which would

imply z* = 0 is stable.

Cobweb Plot
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Figure 4.1: Cobweb plot of z,,41 = %n/1 + =,
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4.3 Tnyl = 1/2+xn

This is a non-linear system.

1
Tpy1 =
T +xn,
finding the equilibrium points:
N 1
x =
242
20 + (z%)? =
(z*)2+22* -1 = 0
o= —1+42
now we look at the stability:
1
@) = 5
-1
’ _
@) = Grap

therefore 2* = —1 4+ /2 is stable, and z* = —1 — V2 is unstable.

21



4.4 x40 = 2

This is a non-linear system.
Tn

_ «a
Tp4l = Tpe

finding the equilibrium points:

¥ = 0
now we look at the stability:
f@) = we
Fle) = (+oz)e
f1) =1

therefore, strictly speaking, we cannot say that x* = 0 is either stable or un-
stable. Looking at the system graphically (Figure 4.2) starting in the neigh-
bourhood of 0 and cobwebbing, we see that the system tends towards oo, i.e. is

unbounded, which would imply «* = 0 is unstable.

22



Cobweb Plot
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Figure 4.2: Cobweb plot of z,,41 = x,e**"

4.5 1,41 = x,In(2?)

This is a non-linear system.

Tpil = Tp ln(wi)

finding the equilibrium points:

23



r* = 2*In((z*)?)
= 22" In(z")
2In(z*) = 1
N
In(z*) = 3
= e
¥ = 0 or +e

now we look at the stability:

Cobweb Plot
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Figure 4.3: Cobweb plot of x,, 11 = z,, In(22) starting from —0.1
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Cobweb Plot
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Figure 4.4: Cobweb plot of z,11 = z, In(x2) starting from 0.1

f(z) = 2zln(z)
fllz) = 2(In(z) +1)

f10) = oo

therefore both * = 0 and z* = /e are unstable. But looking at the system
graphically and cobwebbing starting at —0.1 (Figure 4.3) and then starting at
0.1 (Figure 4.4) - i.e. in the neighbourhood of 0 - we see periodic oscillations

that would suggest a periodic solutions to the system.
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4.6 (rp41 — ) =a*(22 -2z, + 1)

This is a combination of linear systems.

(Tpe1 —)? = ao?(z2 -2, +1)
= o*(z, —1)?
Tpt1 —a = Falz, —1)
Tpnt1 = axa(z,—1)

= at(ax, —a)

this results in two linear systems, the first:

Tpny1 = QIp

n+1

and the second:

Tn+1 = 20— axy,
= 2a—a2a—ax,_1)
= 2a—2a%+ a2xn_1
= 2a—20% +a*(2a — ax,_2)

= 2a—20%2+20% -z,

26



K2

= Qa( j (—a)i) + (—a)" g

= 204(71 _1(10[0):#1) + (—a)" g

2 2a
_ _ _ \n+l =
- (zo 1+a>( R s

2x 2x
- (_1 n+1( _ ) ntt 20
( ) o l1+ao @ + l1+ao

both systems converge for |a| < 1, the first system converges to 0, the second

to 2a/1 + av.

4.7 xp1 = x, +2

This is a non-linear system.
Tpyl = VTp + 2

finding the equilibrium points:

= Var+2
(z*)? = z*+2

¥ = —1 or 2



we discard z* = —1 as it is not positive. Now we look at the stability of z* = 2:

flx) = Va+2
) 1
f(z) ENCE)
re = g

therefore the equilibrium point z* = 2 is stable.

28
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