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Abstract

The author presents a review of Discrete Population Models for Single Species.

He describes their relevance and applications, gives a graphical approach to

solving non-linear models, presents some of the details around Equilibrium, Sta-

bility, and Chaos, looks rigorously at the technique of Linearisation around

equilibrium points, and then reviews Discrete Models with Delay.



Chapter 1

Discrete Models

1.1 Introduction

Discrete models, as opposed to continuous models, use difference equations

(rather than differential equations) to model biological phenomena, such as pop-

ulations, when it makes sense to measure the interval of time between events as

discrete or fixed. It also makes sense where successive measurements occur at

fixed time intervals - such as census data. We are interested in models of the

form:

xt+1 = f(xt)

Where f is a linear or non-linear function of xt. The sequence {x0, x1, x2, . . . }

is called the orbit.

As an example, consider a population that changes over time through births

and deaths only. Let us denote the population at time t to be xt, and the

population at time t + 1 to be xt+1. With a birth rate rb and a death rate rd,

we can describe the rate of change of the population as follows:
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xt+1 − xt = rbxt − rdxt

= (rb − rd)xt

xt+1 = xt + (rb − rd)xt

= (1 + rb − rd)xt

= rxt

where r = 1 + rb − rd. From here it is easy to show that:

xt = rxt−1

= r(rxt−2)

= r2xt−2

= r2(rxt−3)

= r3xt−3
...

= rtx0

and for this simple model it is clear to see that when |r| < 1 then the population

decays to zero, and if |r| > 1 then the population grows without bound. If |r| = 1

then the population exhibits no growth or decay at all, remaining constant at

it’s initial value.

1.2 Applications

Some examples where discrete models may be used are:
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• plant population (annual reproduction)

• insect population (where there is no overlap in generations)

• cell population (within a culture)

1.3 Solutions

Solving a linear discrete model - coming up with a formula that expresses the

n-th iterate of our model in terms of the parameters of the model - is easy,

and allows us to make long-term predictions about the behaviour of our model.

In the non-linear case it is not possible to do this, and hence difficult to make

predictions about the long-term model behaviour, population dynamics, etc.

Figure 1.1: Cobweb plot of xt+1 = xtr(1− xt)
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One technique for helping us to understand non-linear discrete models is cobweb-

bing, which is a graphical method for finding equilibrium points. The technique

is as follows:

• construct a set of axes with xt along the horizontal and xt+1 along the

vertical

• draw the curve of the function xt+1 = f(xt)

• draw the line xt+1 = xt

• draw a line vertically up from (x0, 0) on the horizontal till it meets the

curve of the function

• this point is (x0, x1)

• draw a line horizontally from (x0, x1) till it meets the line xt+1 = xt

• call this point (x1, x1)

• with this point we repeat the above process until we either converge to an

equilibrium point or diverge

Equilibrium points are located where the curve and the line intersect - usually

denoted x∗.
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Chapter 2

Discrete Logistic Growth

2.1 Basics

Consider the Logistic growth model:

dN

dt
= rN

(
1− N

K

)

where r is the growth rate, and K is the carrying capacity. We can turn this

into a discrete model as follows:

Nt+1 −Nt = rNt

(
1− Nt

K

)

Nt+1 = Nt + rNt

(
1− Nt

K

)

= Nt

(
1 + r − rNt

K

)

= Nt(1 + r)
(

1− rNt
(1 + r)K

)
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by making a transformation we have:

xt+1 = f(xt) = xtr
′(1− xt) where r′ = 1 + r and xt = rNt

(1 + r)K

2.2 Equilibrium

we now investigate the equilibrium states of this model, with 0 ≤ r ≤ 4 for

simplicity:

x∗ = x∗r(1− x∗)

r(1− x∗) = 1

1− x∗ = 1
r

x∗ = r − 1
r

so we have two equilibrium points - x∗ = 0 and x∗ = (r − 1)/r with r > 1

(as we are not interested in negative populations). In order to understand the

behaviour of the equilibrium points we need to look at the first derivative of

f(x):

f(x) = xr(1− x)

f ′(x) = r(1− 2x)
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2.3 Stability

Examining both these equilibrium points with |f ′(x)| < 1 denoting stability,

and |f ′(x)| > 1 denoting instability:

f ′(0) = r

f ′
(
r − 1
r

)
= 2− r

so x∗ = 0 is stable for r < 1, and unstable for r > 1, and x∗ = (r − 1)/r is

stable for 1 < r < 3, and does not exist for 0 < r < 1:

0 < r < 1 1 < r < 3

x∗ = 0 stable unstable

x∗ = r−1
r does not exist stable

Table 2.1: Stability of discrete logistic growth model

2.4 Chaos

r = 1 and r = 3 are known as bifurcation points and represent parameter

values where our model’s behaviour changes. In order to understand the model’s

behaviour for r > 3 first we observe the following:

7



xt+1 = f(xt)

= f(f(xt−1)) = f2(xt−1)

= f2(f(xt−2)) = f3(xt−2)
...

= f t+1(x0)

and in particular, looking at the second order difference equation:

xt+2 = f2(xt)

= f(f(xt))

= f(xt)r(1− f(xt))

= xtr
2(1− xt)(1− xtr(1− xt))

setting xt+2 = xt = x∗ we find:

x∗ = x∗r2(1− x∗)(1− x∗r(1− x∗))

1 = r2(1− x∗)(1− x∗r(1− x∗))

1 = r2(1− x∗r + (x∗)2r − x∗ + (x∗)2r − (x∗)3r)

1 = r2 − x∗r3 + (x∗)2r3 − x∗r2 + (x∗)2r3 − (x∗)3r3

0 = 1− r2 + x∗r3 − (x∗)2r3 + x∗r2 − (x∗)2r3 + (x∗)3r3

after some manipulation this reduces to:
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Figure 2.1: Bifurcations

(rx∗ − (r + 1))(r2(x∗)2 − r(r + 1)x∗ + (r + 1)) = 0

here rx∗− (r+ 1) = 0 gives us one of our original equilibrium points, so instead

we look at:

r2(x∗)2 − r(r + 1)x∗ + (r + 1) = 0

this quadratic will give us two real roots if the discriminant is positive:
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r2(r + 1)2 − 4r2(r + 1) > 0

r2 + 2r + 1− 4r − 4 > 0

r2 − 2r − 3 > 0

(r + 1)(r − 3) > 0

as we have restricted ourselves to r > 0, we have r > 3, and our solutions are:

x∗ = (r + 1)±
√

(r + 1)(r − 3)
2r

so the next solution is said to have period 2 as there are two possible values. This

process continues for increasing r. So p-periodic solutions become 2p-periodic

solutions, and so on.

If an odd periodic solution (p ≥ 3) exists for some value of r, say rc, then there

is said to be aperiodic or chaotic solutions for r > rc. Chaotic solutions are

solutions that oscillate in random, or unpredictable, ways.

2.5 Analysis

We now investigate the stability of our Logistic growth model analytically

through linearisation about an equilibrium point:

xt = x∗ + ut, |ut| � 1

substituting this into our function we get:
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x∗ + ut+1 = f(x∗ + ut)

Taylor expanding around the equilibrium point we get:

x∗ + ut+1 = f(x∗) + utf
′(x∗) +O(u2

t ), |ut| � 1

as x∗ is an equilibrium point, f(x∗) = x∗, and discarding higher powers of ut,

we get:

ut+1 = utf
′(x∗)

= λut

= λt+1u0

where λ = f ′(x∗). From this we can draw conclusions about the stability of the

equilibrium point. It is clear that:

|λ| < 1 =⇒ lim
t→∞

ut = 0

|λ| > 1 =⇒ lim
t→∞

ut = ±∞

and hence:

|f ′(x∗)| < 1 =⇒ x∗ is stable

|f ′(x∗)| > 1 =⇒ x∗ is unstable
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Chapter 3

Discrete Models with Delay

3.1 Introduction

So far we have assumed that all members of the population at time t contribute

to the population at time t + 1, but this is not always the case. For example,

depending upon the interval of time, some members of a population may not

have yet reached sexual maturity, and hence cannot contribute to the popula-

tion. As a consequence it makes sense in some cases to introduce a delay term

to the model.

xt+1 = f(xt, xt−τ )

3.2 Analysis

We switch now to a different model - Ricker’s model:

xt+1 = xt exp(r(1− xt))
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with r > 0 - which has equilibrium points x∗ = 0 and x∗ = 1. We make a slight

change to this model by introducing a delay term:

xt+1 = xt exp(r(1− xt−1))

again, with r > 0. Now we linearise around x∗ = 1:

xt = 1 + ut, |ut| � 1

substituting into our equation above we get:

1 + ut+1 = (1 + ut) exp(r(1− (1 + ut−1)))

= (1 + ut) exp(−rut−1)

≈ (1 + ut)(1− rut−1)

= 1− rut−1 + ut − rutut−1

ut+1 = ut − rut−1

the above using the fact that exp(x) ≈ 1 + x for small x.

3.3 Solutions

We have reduced our model to a second order difference equation:

ut+1 − ut + rut−1 = 0
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with characteristic equation:

z2 − z + r = 0

with solutions:

z1,2 = 1
2

[
1±
√

1− 4r
]

0 < r <
1
4

z1,2 = 1
2

[
1± i

√
4r − 1

] 1
4 < r < 1

for the case of 0 < r < 1
4 we have:

ut = C1z
t
1 + C2z

t
2

and because 0 < z1,2 < 1:

lim
t→∞

ut = 0

and hence:

lim
t→∞

xt = 1

therefore x∗ = 1 is stable for 0 < r < 1
4 . For the case of 1

4 < r < 1 we have:
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ρ = |z1,2| =
√
r

θ = tan−1(
√

4r − 1)

z1,2 = ρe±iθ

which leads to:

ut = Czt + Czt

= |A| eiγ(ρeiθ)t + |A| e−iγ(ρe−iθ)t

= 2 |A| ρt
(
ei(θt+γ) + e−i(θt+γ)

2

)

= 2 |A| ρt cos(θt+ γ)

which is stable as r < 1. If we take rc = 1, then at rc we have:

θc = tan−1(
√

4rc − 1)

= tan−1(
√

3)

= π

3

from which we get:

ut = 2 |A| cos(π3 t+ γ)
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and hence:

π

3 tp = 2π

tp = 6

and for r > rc we have ρ > 1 which gives us:

lim
t→∞

ut = ±∞

and hence:

lim
t→∞

xt = ±∞
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Chapter 4

Solutions to problems

4.1 xn+1 = βxn + αxn−1

This is a linear system. The solution is as follows:

xn+1 = βxn + αxn−1

xn+1 − βxn − αxn−1 = 0

with characteristic equation:

λ2 − βλ− α = 0

and solutions:

λ1,2 = β ±
√
β2 + 4α
2
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our general solution is of the form:

xn = C1λ
n
1 + C2λ

n
2

which gives us for n = 0 and n = 1:

x0 = C1 + C2

x1 = C1λ1 + C2λ2

taking x1 we get:

x1 = C1
β +

√
β2 + 4α
2 + C2

β −
√
β2 + 4α
2

= β

2 (C1 + C2) +
√
β2 + 4α

2 (C1 − C2)

= β

2 x0 +
√
β2 + 4α

2 (C1 − C2)

C1 − C2 = 2x1 − βx0√
β2 + 4α

C1 + C2 = x0

solving for C1 and C2 we get:

C1 = x0(
√
β2 + 4α− β) + 2x1

2
√
β2 + 4α

C2 = x0(
√
β2 + 4α+ β)− 2x1

2
√
β2 + 4α
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so our general solution is:

xn =
(
x0(
√
β2 + 4α− β) + 2x1

2
√
β2 + 4α

)(
β +

√
β2 + 4α
2

)n

+
(
x0(
√
β2 + 4α+ β)− 2x1

2
√
β2 + 4α

)(
β −

√
β2 + 4α
2

)n

4.2 xn+1 = xn/1 + xn

This is a non-linear system.

xn+1 = xn
1 + xn

finding the equilibrium points:

x∗ = x∗

1 + x∗

∴ x∗ = 0

now we look at the stability:
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f(x) = x

1 + x

f ′(x) = 1
(1 + x)2

f ′(0) = 1

therefore, strictly speaking, we cannot say that x∗ = 0 is either stable or unsta-

ble. Looking at the system graphically (Figure 4.1) starting in the neighbour-

hood of 1 and cobwebbing, we see that the system tends towards 0 which would

imply x∗ = 0 is stable.

Figure 4.1: Cobweb plot of xn+1 = xn/1 + xn
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4.3 xn+1 = 1/2 + xn

This is a non-linear system.

xn+1 = 1
2 + xn

finding the equilibrium points:

x∗ = 1
2 + x∗

2x∗ + (x∗)2 = 1

(x∗)2 + 2x∗ − 1 = 0

x∗ = −1±
√

2

now we look at the stability:

f(x) = 1
2 + x

f ′(x) = −1
(2 + x)2

∣∣∣f ′(−1 +
√

2)
∣∣∣ < 1∣∣∣f ′(−1−

√
2)
∣∣∣ > 1

therefore x∗ = −1 +
√

2 is stable, and x∗ = −1−
√

2 is unstable.
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4.4 xn+1 = xne
αxn

This is a non-linear system.

xn+1 = xne
αxn

finding the equilibrium points:

x∗ = x∗eαx
∗

∴ x∗ = 0

now we look at the stability:

f(x) = xeαx

f ′(x) = (1 + αx)eαx

f ′(0) = 1

therefore, strictly speaking, we cannot say that x∗ = 0 is either stable or un-

stable. Looking at the system graphically (Figure 4.2) starting in the neigh-

bourhood of 0 and cobwebbing, we see that the system tends towards ∞, i.e. is

unbounded, which would imply x∗ = 0 is unstable.
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Figure 4.2: Cobweb plot of xn+1 = xne
αxn

4.5 xn+1 = xn ln(x2
n)

This is a non-linear system.

xn+1 = xn ln(x2
n)

finding the equilibrium points:
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x∗ = x∗ ln((x∗)2)

= 2x∗ ln(x∗)

2 ln(x∗) = 1

ln(x∗) = 1
2

x∗ =
√
e

∴ x∗ = 0 or
√
e

now we look at the stability:

Figure 4.3: Cobweb plot of xn+1 = xn ln(x2
n) starting from −0.1
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Figure 4.4: Cobweb plot of xn+1 = xn ln(x2
n) starting from 0.1

f(x) = 2x ln(x)

f ′(x) = 2(ln(x) + 1)

f ′(0) = −∞

f ′(
√
e) = 3

therefore both x∗ = 0 and x∗ =
√
e are unstable. But looking at the system

graphically and cobwebbing starting at −0.1 (Figure 4.3) and then starting at

0.1 (Figure 4.4) - i.e. in the neighbourhood of 0 - we see periodic oscillations

that would suggest a periodic solutions to the system.
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4.6 (xn+1 − α)2 = α2(x2
n − 2xn + 1)

This is a combination of linear systems.

(xn+1 − α)2 = α2(x2
n − 2xn + 1)

= α2(xn − 1)2

xn+1 − α = ±α(xn − 1)

xn+1 = α± α(xn − 1)

= α± (αxn − α)

this results in two linear systems, the first:

xn+1 = αxn

= αn+1x0

and the second:

xn+1 = 2α− αxn

= 2α− α(2α− αxn−1)

= 2α− 2α2 + α2xn−1

= 2α− 2α2 + α2(2α− αxn−2)

= 2α− 2α2 + 2α3 − α3xn−2
...
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= 2α
( n∑
i=0

(−α)i
)

+ (−α)n+1x0

= 2α
(1− (−α)n+1

1 + α

)
+ (−α)n+1x0

=
(
x0 −

2α
1 + α

)
(−α)n+1 + 2α

1 + α

= (−1)n+1
(
x0 −

2α
1 + α

)
αn+1 + 2α

1 + α

both systems converge for |α| < 1, the first system converges to 0, the second

to 2α/1 + α.

4.7 xn+1 =
√
xn + 2

This is a non-linear system.

xn+1 =
√
xn + 2

finding the equilibrium points:

x∗ =
√
x∗ + 2

(x∗)2 = x∗ + 2

(x∗)2 − x∗ − 2 = 0

∴ x∗ = −1 or 2
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we discard x∗ = −1 as it is not positive. Now we look at the stability of x∗ = 2:

f(x) =
√
x+ 2

f ′(x) = 1
2
√
x+ 2

f ′(2) = 1
4

therefore the equilibrium point x∗ = 2 is stable.
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